
c o m p u t e r s & s e c u r i t y 1 0 0 (2 0 2 1) 1 0 2 1 0 8

Available online at www.sciencedirect.com

j o u r n a l h o m e p a g e : w w w . e l s e v i e r . c o m / l o c a t e / c o s e

TC 11 Briefing Papers

Automating post-exploitation with deep

reinforcement learning

Ryusei Maeda

∗, Mamoru Mimura

1-10-20 Hashirimizu, Yokosuka, Kanagawa, Japan

a r t i c l e i n f o

Article history:

Received 19 March 2020

Revised 7 August 2020

Accepted 5 November 2020

Available online 10 November 2020

Keywords:

Reinforcement learning

Post-exploitation

A2C

Q-Learning

SARSA

Deep reinforcement learning

Lateral movement

a b s t r a c t

In order to assess the risk of information systems, it is important to investigate the behavior

of the attacker after successful exploitation (post-exploitation). However, the audit requires

the experts, and to the best of our knowledge, there are no solutions to automate this pro-

cess. This paper proposes a method of automating post-exploitation by combining deep

reinforcement learning and the PowerShell Empire, which is famous as a post-exploitation

framework. Our reinforcement learning agents select one of the PowerShell Empire modules

as an action. The state of the agents is defined by 10 parameters such as type of account that

was compromised by the agents. In the learning phase, we compared the learning progress

of the 3 reinforcement learning models: A2C, Q-Learning, and SARSA. The result shows that

the A2C could gain reward most efficiently. Moreover, the behavior of the trained agents

are evaluated in a test domain network. The results show that the trained agent using A2C

could obtain the administrative privileges to the domain controller.

© 2020 The Authors. Published by Elsevier Ltd.

This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/)

1. Introduction

Much attention has been directed to information security with
the development of information and communication technol-
ogy. There are two types of security evaluation methods for
network systems: penetration tests and red team tests. The
penetration test performs a systematic vulnerability scan of
the network, applications, hardware, etc. These types of tests
create a matrix of vulnerabilities, patching issues, and very
actionable results. Therefore, the penetration test is an effec-
tive method for evaluating the existence of known vulnera-
bilities. However, the real attacker does not perform vulner-
ability scanning as performed in the penetration test in the
∗ Corresponding author.
E-mail addresses: cgrddntfr5@yahoo.co.jp (R. Maeda), mim@nda.ac.jp

https://doi.org/10.1016/j.cose.2020.102108
0167-4048/© 2020 The Authors. Published by Elsevier Ltd. This is an ope
(http://creativecommons.org/licenses/by/4.0/)
behavior after successful exploitation (post-exploitation). In
the red team test, the red team acting as an attacker per-
forms from intrusion to the post-exploitation according to the
goal of the campaign. The target of evaluation is not limited
to the vulnerability, but also the skill and security policy of
the defender blue team. The post-exploitation consists of the
following actions: lateral movement, privilege escalation, col-
lecting information, and building backdoors, etc. These pro-
cesses are performed as stealthy as possible to mimic the be-
havior of a real attacker. Altogether, the red team test can
provide a more comprehensive security assessment than the
penetration test. There are many solutions and vulnerability
management programs that support and automate penetra-
 (M. Mimura).

n access article under the CC BY license

https://doi.org/10.1016/j.cose.2020.102108
http://www.sciencedirect.com/science/journal/01674048
http://www.elsevier.com/locate/cose
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cose.2020.102108&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:cgrddntfr5@yahoo.co.jp
mailto:mim@nda.ac.jp
https://doi.org/10.1016/j.cose.2020.102108
http://creativecommons.org/licenses/by/4.0/

2 c o m p u t e r s & s e c u r i t y 1 0 0 (2 0 2 1) 1 0 2 1 0 8

t

O
s
t

p
c
p
l
u
t
C
s

e
i
t
p
r
l
t
t
o
t
p
b
o
l
(

s
e
a
n
s
t

W
e

(

t

T

i

T
t
c

o

S
m
m

s
m

2

2

T
m
(
T
t
t

T
s
b

M
a
c
m
c

L
t
(

m
a
v
t
b
n
p
r
t
s
d
l
t
w

T
a
i
t

2

G
t
s
p

T
i
r
i
t

ion testing, e.g., OpenVAS 1 , sqlmap

2 and DeepExploit (Isao).
n the other hand, to the best of our knowledge, there are no
olutions to automate the post-exploitation of the red team

est.
Incidentally, one of the well-known automation ap-

roaches for security solutions is the approach that uses ma-
hine learning. There are three types of machine learning: su-
ervised learning, unsupervised learning, and reinforcement

earning. Supervised learning and unsupervised learning are
sed for intrusion detection, malware detection, privacy pro-
ection systems, etc (Apruzzese et al., 2018; Çavusoglu, 2019;
ui et al., 2018; Jia and Gong, 2018; Kim et al., 2019; Milo-
evic et al., 2017). These methods use datasets for training,
.g., malware dataset, review dataset and mail dataset. Prepar-
ng a large dataset for training is a prerequisite for the au-
omation of security solutions. However, it is difficult to pre-
are the dataset of behavior in a real-time, continuous envi-
onment such as the post-exploitation. Therefore, supervised

earning and unsupervised learning are not proper for the au-
omation of the post-exploitation. Reinforcement learning is
he machine learning type that learns with the exploration

f environments and the accumulation of experience. The
rained reinforcement learning agents are modeled, so as to
erform continuous optimal actions. Thereby, the agents can

e applied to complex and real-time environments. The previ-
us works have demonstrated that multi-agent reinforcement

earning can be applied to cyber-security simulation scenarios
 Bland et al., 2020; Elderman et al., 2017; He et al., 2016). Be-
ides, they proposed an algorithm to learn the optimal strat-
gy. However, to the best of our knowledge, no study has been

pplied reinforcement learning to actual cyber-security sce-
arios. It is necessary to make the training environment (the
imulation of the previous works) concrete and practical so
hat apply theirs works to a actual cyber-security scenario.

hereas, it is not realistic to prepare many concrete learning
nvironments in the real world.

In this study, we apply the concept of data augmentation

 Chawla et al., 2002; Leen et al., 2001; Simard et al., 2000), so as
o cope with the lack of learning data and the environment.
his can add diversity to the learning environment. Besides,

t prevents overfitting of the reinforcement learning agents.
he trained reinforcement learning agents are designed to au-

omate efficient post-exploitation in a real environment. The
ontributions of this paper are as follows.

• Evaluating the applicability and effectiveness of deep rein-
forcement learning to the post-exploitation in a real envi-
ronment

• Automating red team testing tasks

This paper is organized as follows. Section 2 provides an

verview of security techniques using reinforcement learning.
ection 3 provides an overview of the reinforcement learning
odel used in our work. Section 4 presents the details of our
ethod. Section 5 explains the experimental setup and the re-
1 https://www.openvas.org/
2 http://sqlmap.org/

f
t

c
a

ults. Section 6 discusses these results. Finally, in Section 7 the
ain findings are summarized.

. Related work

.1. Lateral movement

his paper focuses on the automation of lateral move-
ent among the actions that constitute the post-exploitation

 Section 4.4, Section 5). Once APT (Advanced Persistent
hreats) attackers entered the target networks, they cau-

iously use the compromised systems as stepping stones so
hat reach critical systems buried deep inside the networks.
hese incremental movements to critical systems in an in-
ide network are called lateral movement. Many network-
ased and host-based solutions (such as Windows Defender,
cAfee, Norton, Snort, and OSSEC) are developed to detect

nd eliminate lateral movement. Besides, there have been

onsiderable studies on this theme. Tian et al. proposed the
ethod that efficiently detects the lateral movement in a

omplex edge cloud computing environment (Tian et al., 2019).
ah et al. proposed the framework for improving the detec-
ion of the lateral movement based on pattern risk scoring
 Lah et al., 2018). On the other hand, the lateral movement

ethods of attackers are diversifying. The popular methods
re as follows: exploiting vulnerabilities in SMB and RDP ser-
ices, exploiting credentials (e.g. credential dumping, pass-
ha-hash, pass-the-ticket (B.Deply (2014) ,Duckwall and Camp-
ell ,Dunagan et al. (2009))), reusing existing client commu-
ication (e.g. SSH hijaking (Boileau)). Niakanlahiji et al. have
roposed a stealthy lateral movement method that does not
equire privilege escalation or establishing a new connec-
ion (Shadowmove, 2020). The lateral movement requires high

kill because it needs additional operation such as credential
umping. The purpose of this study is to automate the real

ateral movement by deep reinforcement learning. Simple au-
omation of the lateral movement (e.g. brute force attempts
ith scripts) does not correspond to actual attacker actions.
herefore, this paper proposes an efficient and more realistic
utomation method. In our method, the reinforcement learn-
ng agent learns the most suitable strategy and technique for
he defending system.

.2. Applying reinforcement learning to penetration tests

hanem and Chen (2018) proposed an intelligent penetration

esting approach using reinforcement learning. The proposed

ystem is modelled as a partially observed Markov decision

rocess (POMDP), and tested using an external POMDP-solver.
he results support the hypothesis that reinforcement learn-

ng can enhance penetration testing in term of accurate and

eliable outputs. However, the work of Ghanem et al. is lim-
ted to only the planning phase and not entire implementa-
ion phase in actual environment.

DeepExploit (Isao) is the fully automated penetration test
ramework linked with Metasploit (Rapid7) . DeepExploit iden-
ifies the status of all open ports on the target server and exe-
utes the exploit at pinpoint using reinforcement learning in

ctual environment.

https://www.openvas.org/
http://sqlmap.org/

c o m p u t e r s & s e c u r i t y 1 0 0 (2 0 2 1) 1 0 2 1 0 8 3

The goals of these frameworks are only automating and
improving vulnerability diagnoses and initial exploitation
tasks, these frameworks do not support the post-exploitation.
On the other hand, the goal of our work is automating post-
exploitation and improving the efficiency. In the automation
of the initial exploitation task, no state transition occurs for
the reinforcement learning agent. By contrast, in the automa-
tion of the post-exploitation task, the state transition of the
agent must be defined. Specifically, the post-exploitation task
is represented as a sequential process, therefore, the state
transition occurs. Our method applies reinforcement learning
to the sequential process.

2.3. Cyber security simulation

Elderman et al. (2017) focus on a cyber-security simulation
game in networks. The game is an adversarial sequential deci-
sion making problem played with two agents, the attacker and
defender. The simulation network configuration is modeled
as the network composed of nodes where the attacker and
defender move. The state of the attacker is the node where
the attacker is located. Each of attacker’s actions has an at-
tack value, and the exploit succeeds when it is larger than the
defense value of the defender. The two agents pitted one re-
inforcement learning technique against each other and exam-
ined their effectiveness against learning opponents. This work
showed that the agents are not able to win over the long term
because of both agents trying to adapt each other.

However, there are actually few situations like the pre-
vious work: in the situations, the attacker and defender
adapt and deal with each other in real-time. According to
Sharma et al. (2011) , 62% of cyber attacks are detected after the
attackers achieved their goals. This means that attackers and
defenders rarely compete in real time. Therefore, in this pa-
per, we train the attack agents in the environments that does
not explicitly set the defense agents.

Bland et al., 2020 implemented a reinforcement learning
algorithm to the cyberattack models that were modeled us-
ing an extension of the Petri net formalism. The models were
validated by a panel of cybersecurity experts in a structured
face validation process. Therefore, this simulation is more re-
alistic than the cyber-security simulation game. The experi-
ments were conducted with an attacker and defender compet-
ing each other. The results demonstrated the potential of for-
mally modelling cyberattacks and of applying reinforcement
learning to improving cybersecurity.

Both of the previous works have been validated the effects
of reinforcement learning only by the simulation. The second
contribution of our work is to validate the effects of reinforce-
ment learning in a real environment, not a simulation. Our
work embodies the previous works in the following points: the
network configuration, the agent state, and the agent actions.
This allows the trained agents to work in actual environment.

3. Reinforcement learning

Our method uses deep reinforcement learning to automate
the post-exploitation. This section provides an overview of
reinforcement learning and A2C, the algorithm used in our
method.

3.1. Types of reinforcement learning

Reinforcement learning algorithms are designed to efficiently
explore the optimal policy under a given environment. The
value-based algorithms focus on estimating the optimal ac-
tion value function. The agents of the value-based algo-
rithm use the experience gained from the environment to up-
date the value evaluation. These algorithms are represented
by Q-Learning. In contrast, the policy-based algorithms fo-
cus on improving current policies. The agents of the policy-
based algorithm use the experience to update their strategies.
These algorithms are represented by State-Action-Reward-
State-Action(SARSA). In addiion to these 2 types, there is
the Actor-Critic that combines a value-based method and a
policy-based method. The Actor-Critic method is based on the
idea that the action values and strategies can be considered
separately. Thus, This method updates the strategy and value
evaluation separately to advance learning. This method gen-
erally takes more time for learning than the other methods.
However, in the end, this method has a more stable learning
result than other methods.

3.2. A2C

Our method uses A2C (Advantage Actor Critic) as a reinforce-
ment learning. A2C is similar to A3C (Asynchronous Advan-
tage Actor Critic) (Mnih et al., 2016), but there is no asyn-
chronous part. Both A2C and A3C are learning algorithms us-
ing the advantage. The advantage is expressed in the follow-
ing equation: A (s, a) = Q(s, a) −V(s) . The advantage is denoted
as A (s, a) . We denote the state of the agent as s and the ac-
tion as a . V(s) represents the pure value of the state s ; there-
fore, A (s, a) represents the pure value of action a . Considering
the advantage can stabilize the learning. According to OpenAI,
A2C lacks the asynchronous part but A2C performs better than
A3C (Wu et al.). Thus, our method uses A2C, so as to stabilizes
and improves the learning progress.

In our experiments, SARSA and Q-Learning were imple-
mented in addition to A2C so that demonstrate the superiority
of A2C.

4. Proposed method

4.1. Overview

This section describes the proposed method, that is, the com-
ponents of the training of the reinforcement learning agents.
First, we define the state of the agent s . Second, we define the
action a selected by the agent in the environment (selected
from the action list A). The modules registered in PowerShell
Empire are set as action list A . Lastly, we set rewards r ac-
cording to the result of the action a . Fig. 1 shows an overview
of our method. The agent accumulates the set of s, a , and r
observed from the learning environment as experience and
proceed with learning. Our method uses A2C as the model
for reinforcement learning. We build multiple environments

4 c o m p u t e r s & s e c u r i t y 1 0 0 (2 0 2 1) 1 0 2 1 0 8

Fig. 1 – The overview of the proposed method. The components of the training environment are action, state, and reward.
The state of the agent is defined in the environment, and the action is determined based on the experience. The agent gains
rewards according to the result of the action. The agent determines the next action corresponding to the state based on the
experience.

t
i

t

d
m

4

T

t

E

a
m
r
a
e
p
n
t
m
u
o
c

o make a distributed environment. The learning efficiency is
mproved by the distributed collection of experience.

This section is organized as follows. Section 4.2 describes
he agent state s . Section 4.3 describes the action a . Section 4.4 ,
escribes the rewards r setting. Finally, we describe the imple-
entation in Subsection 4.5 .

.2. Definition of agent state

he state s of the agent is defined by 10 entries. Table 1 shows
he names of the entries and the summary of its information.
ach entry is the information that can be observed in both the
Table 1 – The definition of the state of the agent.

Entry Name Details

Discovered Computer Number of discovered computers in the
environment

Local Admin Access Whether the agent has local admin
access or not (define with 0 or 1)

Compromised
Computer

Number of compromised computers

Previous Module The action performed in the previous step
User type Type of the user: User or privileged user

(define with 0 or 1)
User Name Whether the agent capture user names in

the environment or not (define with 0
or1)

Password Whether the agent capture plaintext
credential or not (define with 0 or 1)

Hash Whether the agent capture hash of
credential or not (define with 0 or 1)

Rhost Found vulnerable hosts in the network or
not (define with 0 or 1)

DCOM Found running DCOM Applications or not
(define with 0 or 1)

l
t

T
o
t
f
i
a
C
n
c
t
o

t
e
o

e

4

W
e
t

ctual environment and the training environment. The infor-
ation of the entries represents information possessed by the

eal attackers. This makes it possible to reproduce the realistic
ttacks. Discovered Computer denotes the number of discov-
red computers in the network. Likewise, Compromised Com-
uter denotes the number of compromised computers in the
etwork. These indicate the current location of the agent in

he network and the progress of the campaign. Besides, each

odule has a unique number. The value of the Previous Mod-
le entry is the number of the module performed in the previ-
us step. The Admin Access value indicates whether any other
omputers can be accessed using compromised user privi-
ege. If such computers are discovered, the agents can perform

he lateral movement and code execution on the computers.
herefore, this information should be actively used. The entry
f User Name, Password, and Hash represents the capture sta-
us of the credential information. These credentials are useful
or the agents to compromise new computers and other assets
n the network. The entry of Rhost indicates whether a vulner-
ble host was discovered in the network. DCOM (Distributed

omponent Object Model) is a Windows feature for commu-
icating between software components on different remote
omputers. There are some methods for the lateral movement
hat the agents can take advantage of by using the DCOM. If
ther methods of the lateral movement are being monitored,
he agents can take advantage of DCOM. Altogether, the pres-
nce of the DCOM application influences the determination

f the agents. Hence, we add the DCOM entry as one of the
lements of the agent state.

.3. Definition of agent action

e define the actions that are actually performed in the post-
xploitation as the agent actions, so as to automate prac-
ical tests. Recently, PowerShell is often used in the post-

c o m p u t e r s & s e c u r i t y 1 0 0 (2 0 2 1) 1 0 2 1 0 8 5

Table 2 – PowerShell Empire Modules Classification.

Group name Number of registered modules

Code Execution 6
Management 30
Collection 24
Persistence 18
Credentials 23
Privesc 22
Exfiltration 2
Recon 3
Exploitation 3
Situational Awareness 52
Lateral Movement 12
Trollsploit 9

exploitation (Wueest). PowerShell Empire (Powershell empire)
is a well-known tool implemented as the post-exploitation
framework using PowerShell. For this reason, we set the Pow-
erShell Empire modules (204 modules) as the agent action list
A. A is classified into 12 groups by the characteristics. Table 2
shows the group names after the classification of A and the
number of modules registered in the group. The modules be-
longing to the same group have different means and mecha-
nisms. However, they are basically used to achieve the same
purpose. For example, the performance of a module for cap-
turing a screen differs from that of a module for installing a
keylogger; however, they belong to the same group because
they are used for information gathering. Collection group is
the group of modules for information gathering by the method
such as the key logger described above. Credential group is the
module group that can capture credentials and tokens using
Mimikatz etc. Lateral Movement group is the group of mod-
ules that perform the lateral movement using various meth-
ods such as DCOM, WMI (Windows Management Instruction),
PS command (PowerShell session command), etc. We briefly
described the 3 categorized groups here. More information
can be obtained on the PowerShell Empire project official page
(Powershell empire).

4.4. Reward setting

This section describes the reward setting. We set the re-
wards for each module group separately. As we described in
Section 4.3 , the modules are classified according to the pur-
pose. In the training environment, the rewards can be set ac-
Fig. 2 – Implementation overview. Because A2C is implemented,
cording to the goals that the agents should achieve. In the test-
ing phase of Section 5 , the goal of the agents is to obtain the
administrative privilege to the domain controller. In that case,
the first compromised computer is usually not an asset like a
domain controller. Consequently, in order to obtain the priv-
ilege or discover valuable systems, the attackers must move
around the network. For this reason, the modules of the Lat-
eral Movement group are the key actions in this campaign.
The reward r to the agents is set to be given for the success
of the lateral movement. Besides, the size of r depends on
whether a new account control has obtained at the time of
the lateral movement success. For example, even if the lateral
movement between computers using WMI is successful, the
varieties of the actions that can be performed in the network
do not change. If the agent obtains control of an account with
higher privilege, the probability of access to high-value assets
increases, that is, the value of the success is high. Therefore,
the reward for the success of the high-value lateral movement
is set higher than the others. Reward r setting is as follows.

∗ r = 50 if the valuable Lateral Movement is successful.
∗ r = 10 if the low-value Lateral Movement is successful.
∗ r = -1 if the lateral movement fails.
∗ For other actions, r = -1 regardless of success or failure.

Reward r = -1 means punishment for the agents. The agents
try to maximize the reward. Therefore, if r = -1 is set for each
action, the agents try to reach the goal as soon as possible.
This corresponds to a situation where real attackers achieve
the goal as soon as possible to avoid detection of the breach.
Besides, the episode ends when the agent obtains the reward
r = 50, that is, when the agent succeeds the high-value lateral
movement.

4.5. Implementation

Fig. 2 shows an overview of the implementation. The hidden
layer of a deep neural network is 3 fully connected layers.
Thus, the deep neural network is consists of a total of 5 lay-
ers including the input and output layers. The input value is
the agent state s . The output values are the selection proba-
bility p(a) of each action included in the action list A and the
state value v(s) . In other words, the output values are the prob-
ability distribution of the action selection, and the state value.
Action options of the agents are modules acquired via REST-
ful API implemented in PowerShell Empire. Deep neural net-
works accumulate experience that is composed of a set of ”the
 there are actually multiple environments at the same time.

6 c o m p u t e r s & s e c u r i t y 1 0 0 (2 0 2 1) 1 0 2 1 0 8

s
r
n
a
v
e
a

W
f
p
m
i

5

5

5
S
t
b
i
D
s
t
f
a
s
n
o
S
t

t
c
c
a
S
t

Table 3 – Success probabilities of modules performing
Lateral Movement in E.

Module Name Success Probability

invoke wmi debugger 40–60%

invoke wmi 70–90%

invoke sshcommand 40–60%

invoke psexec 40–60%

invoke psremoting 10–30%

invoke smbexec 10–30%

jenkins script console 10–30%

invoke dcom 70–90%

invoke executemsbuild 40–60%

inveigh relay 40–60%

new gpo immediate task 10–30%

invoke sqloscmd 10–30%

t
i
a
d
o
p
e

a
a
p

W
t
A
5
r
r
s
t
m
a
m

T
i

F
p

elected actions, the states before and after actions, and the
ewards”. Afterward, it computes the gradient between each

ode by using the experience. The action selections of the
gents are based on the ε greedy method. According to the
alue of ε, a that p(a) is max or randomly determined is ex-
cuted. The value of ε is set to 0.5 at the start of the training
nd approach 0 in proportion to the progress of the training.
e used the Restful API implemented in PowerShell Empire

or communication between the agents and PowerShell Em-
ire. Our method including the definition of the state, com-
unication with RESTful API, and the setting of rewards, was

mplemented using Python 3.6.

. Evaluation

.1. The learning phase

.1.1. Setting up training environment and training the agent
etting up a large amount of environment for the training of
he agents is not practical. If a large-scale environment could

e prepared in the real world for the agent training, learn-
ng from the real world sample would have been possible: like
eep Exploit. This situation is the ideal environment for this
tudy; however, we could not solve this problem due to prac-
icality and cost issues. Besides, there is no public resource
or the training of the agents to the best of our knowledge. To
ddress these issues, we designed the training environment
o that the network configuration and the vulnerability were
ot uniquely determined. Specifically, we applied the concept
f data augmentation (Chawla et al., 2002; Leen et al., 2001;
imard et al., 2000) and added noise to the basic network set-
ings, so as to give diversity to the environment.

In this study, the goal of the learning phase is to learn the
ask of obtaining the administrative privilege to the domain

ontroller. There are several tasks to learn. In this paper, we
hose this task for the sake of simplicity. The key actions to
chieve the goal are the lateral movement as described in

ection 4.4 . We set the probability of success for the key ac-
ions, the lateral movement, so that the network setting and
ig. 3 – Comparison of the progress of learning. Each line in the g
robability. We calculated the average reward per 10 steps from t
he vulnerabilities are not uniquely determined. That is, this
s the noise for preventing the agents from over-fitting. When

n agent attempts a lateral movement, the success or failure
epends on the state of the agent and the success probability
f the action. The amount of the reward give the agents de-
ends on the success or failure. The agents attempt the post-
xploitation, get the rewards based on their success or failure,
nd accumulate them as their training samples. Summary, the
gent attempts the post-exploitation for each pattern of the
robability settings, collects the training samples, and learns.
e attempted 5 patterns of the probability setting so as to set

he success probability that can perform appropriate learning:
 (all success probabilities are set to 20%), B (the pattern of
0%), C (the pattern of 80%), D (the success probabilities are set
andomly), and E (the success probabilities are set to a certain

ange according to the characteristics of the module). Table 3
hows the probability settings for E. Fig. 3 shows the transi-
ion of the obtained rewards of each method. The reinforce-

ent learning model is A2C in any method. The horizontal
xis represents the number of times the agent executed the
odule(action). We attempted 50,000 steps in each method.

he results indicate A, B, and C were successful in the learn-
ng phase.
raph indicates the methods of setting the success
he reward of the last 200 steps.

c o m p u t e r s & s e c u r i t y 1 0 0 (2 0 2 1) 1 0 2 1 0 8 7

Fig. 4 – Transition of the loss values for A.

Fig. 5 – Transition of the loss values for B.

Fig. 4 , 5 , 6 , 7 , and 8 show the transition of the loss value in
the learning phase of each method. The values of loss for B, C,
and D show a lot of fluctuations and do not tend to converge
to 0 even before the end of the learning. On the other hand,
the loss values for A and E grow rapidly from when the ob-
tained rewards grow. Besides, the loss values for A and E tend
to converge to 0 as the obtained rewards level off. These re-
sults indicate that Method-A and Method-E are more suitable
for training than Method-B, C and D in terms of the loss value.

5.1.2. Comparison of reinforcement learning models
Next, we evaluated the progress of training for the 3 models
of reinforcement learning. In addition to A2C, Q-Learning and
SARSA were implemented. We attempted the training of the
Q-Learning agent and SARSA agent under the same conditions
as for A2C. We applied C and E, which performed well in the
A2C learning phase, to the Q-Learning and SARSA agent learn-
ing. Fig. 9 and Fig. 10 respectively show the transition of the
gained rewards for each model when C and E are applied. The
results show that the A2C model has higher final rewards than
the other models. It is evident that A2C had better learning ef-
ficiency than other models. The SARSA’s rewards are partially
higher than the Q-Learning’s rewards but not stable. Besids,
there was no significant change in the gained rewards of Q-
learning agents.

5.2. The testing phase

In this section, we compare the trained agents by running
them in the real environment. The trained agents are executed
in the test Windows domain network. The goal of the trained
agent is to obtain the administrative privilege to the domain
controller. We measure the number of execution steps and the
run time until obtaining the administrative privileges to the
domain controller.

Fig. 11 shows an example of a typical domain network con-
figuration. As shown in Fig. 11 , domain network configurations
are often complicated by many components such as comput-
ers, users, and servers. For the sake of simplicity, however,
our experiment is performed with the network configuration

8 c o m p u t e r s & s e c u r i t y 1 0 0 (2 0 2 1) 1 0 2 1 0 8

Fig. 6 – Transition of the loss values for C.

Fig. 7 – Transition of the loss values for D.

Fig. 8 – Transition of the loss values for E.

c o m p u t e r s & s e c u r i t y 1 0 0 (2 0 2 1) 1 0 2 1 0 8 9

Fig. 9 – The transition of the gained rewards in the last 10 steps of each reinforcement learning model when C is applied.

Fig. 10 – The transition of the gained rewards in the last 10 steps of each reinforcement learning model when E is applied.

Fig. 11 – Typical domain network configuration example.

10 c o m p u t e r s & s e c u r i t y 1 0 0 (2 0 2 1) 1 0 2 1 0 8

Fig. 12 – Test Windows domain network configuration. The agents start the action from PC1.

Fig. 13 – The run time and the number of execution steps for the each agent. 1 h is set as the upper limit time of the run time.

s
o

a
c
a

F
U
P
p
m
m

t
t
F
w
u
u

a
o
t
w
o
e
b

S
n
i
o
t
w
M
e
t
t
o
hown in Fig. 12 . The configuration of Fig. 12 is a simplified

ne of the configuration of Fig. 11 . In the test network, for the
gents to obtain the administrative privilege to the domain

ontroller, it is necessary to move between computers twice
nd between users twice. Specifically, the process is as follows.
irst, the agent moves from PC1 to PC2 with the permission of
SER1. Second, the agent compromises the USER2 account on

C2. Third, the agent accesses the domain controller using the
rivileges of USER2. Finally, the agent compromises the Ad-
inistrator account with administrative privilege to the do-
ain controller.
Fig. 13 shows the number of execution steps and the run

ime for the each agent. Random in Fig. 12 represents the agent
hat randomly executes a selectable action. Similarly, Brute
orce in Fig. 12 represents the agent that attempts brute force
ith the selectable actions. These two basic methods do not
se reinforcement learning algorithms. Therefore, these are
sed as comparison targets to evaluate the effectiveness of
pplying reinforcement learning. The following results were
btained. First, we observed several significant differences in

he run time. A2C-A and A2C-E achieved the goal in 15 steps
ithin the time limit. Besides, A2C-A had the same number
f steps as A2C-E, nevertheless, A2C-A had a slightly shorter
xecution time. In contrast, the other methods, including the
asic methods, failed to achieve the goal within the time limit.
econdly, we observed several significant differences in the
umber of execution steps. The basic methods have no bias

n choosing actions. Therefore, the average execution time
f each step can be obtained from the number of steps of
he basic methods; the average execution time of each step

as 40 to 45 seconds. However, Q-Learning-E and all SARSA-
ethods executed the steps approximately 3–4 times the av-

rage number of steps within the time limit. This indicates
hat the agents selected only actions with a short execution

ime. Finally, an interesting part of the results is the behavior
f A2C-B and A2C-C in the test network. In the learning phase,

c o m p u t e r s & s e c u r i t y 1 0 0 (2 0 2 1) 1 0 2 1 0 8 11

A2C-B and A2C-C obtained higher rewards than A2C-A, never-
theless, only A2C-A achieved the goal in the test network. As
mentioned above, these methods are different in the method
of setting the success probability.

6. Discussion

6.1. Effectiveness of deep reinforcement learning

The purpose of this study is 1) to automate the post-
exploitation, 2) to apply deep reinforcement learning to the
post-exploitation as the method of the automation, and 3) to
verify its effectiveness.

The first point we need to discuss is the results of the learn-
ing phase experiments. The results of Section 5.1 show that
C and E could learn the behaviors to achieve significant lat-
eral movement. In addition, the results show that A2C has bet-
ter learning efficiency than Q-learning and SARSA. This sug-
gests that A2C is suitable for the learning the task of the post-
exploitation. The tabular approach is not suitable for this sce-
nario because there are too many combinations of states and
actions.

The point we must consider next is the result of the testing
phase experiments. The results of Section 5.2 show that A2C-
A and A2C-E could obtain the domain controller administra-
tive privilege. This suggests that deep reinforcement learning
could be applied to the post-exploitation and automate the
task of the post-exploitation. Besides, our method achieved
the goal in 15 steps. By contrast, the agentless automation
models (Random and Brute Force) could not achieve the goal.
It should be noted that the agents learned the appropriate
behavior for their state so that compromise the domain con-
troller as soon as possible. As a result, the agents followed the
shortest path (not intentionally looking for the shortest path).
In our experiments, there are cases that the agents cannot go
through the path despite they could go through it before. This
is because the success of the lateral movements depends on
the success probability. Therefore, the shortest path search is
difficult. If the training environment is static, we can find the
shortest path. In this case, there are more efficient algorithms
for the findings of the shortest path.

Here, we must consider the pros and cons of the agent-
based and agentless automation models for a discussion of
the effectiveness of the deep reinforcement learning. Table 4
outlines the pros and cons of each model. The result of the ex-
periments shows that the agent-based automation model has
Table 4 – Comparison of agent-based model and agent-
less model.

Pros Cons

Agent-based Model efficient need training
flexible need training

environment

Agent-less Model not need training inefficient
impractical
inflexible

advantages in terms of the efficiency of the post-exploitation.
The agentless automation models will not be able to achieve
their goals in a complex environment like our testing environ-
ment. This is the cons of the agentless automation model. On
the other hand, the agent-based automation models require
training, whereas the agentless automation models do not re-
quire it. This is the cons of the agent-based automation model
since the proposed solution has the biggest problem with the
preparation of the training sample. The agentless automation
models that do not require the training do not have this prob-
lem. This is the pros of the agentless automation model.

Finally, let us consider the result of the failures in the test-
ing phase of A2C-B and A2C-C. In A2C-B and A2C-C, the ex-
ecuted lateral movement always succeeds with a high prob-
ability. Therefore, the action selection may be biased toward
the action that can be found first and obtained the reward.
They are considered that overfitted for the training environ-
ment and failed on the test network.

6.2. Comparison

DeepExploit (Isao) is a practical framework that applies re-
inforcement learning to cybersecurity scenarios. We should
compare Deep Exploit with the proposed solution carefully
since they have some common points but also have major dif-
ferences.

Table 5 summarizes the comparison of our solution and
DeepExploit. A common feature of the proposed solution and
DeepExploit is to use deep reinforcement learning as an au-
tomated approach. Furthermore, the reinforcement learning
models they use are similar (A2C and A3C). Meanwhile, as we
described in Section 2.2 , automation targets of Deep Exploit
are the initial exploitation of cyber-attacks. DeepExploit per-
forms a port-scanning on the target server and executes the
best exploit for the target service: This is the first step of the
cyber-attack. By contrast, the proposed solution automates
the steps after DeepExploit ran, that is, the post-exploitation.
The post-exploitation task involves state transitions, unlike
initial exploitation. For example, in the case of the DeepEx-
ploit, services on the port of the target server define the state
of agents. Therefore, the actions of the agent do not change
the state. In the case of the proposed solution, for example, if
the agent succeeds in the movement to another computer, it
needs to take the following actions accordingly; therefore, the
state transition should be represented. Summary, the applica-
tion of reinforcement learning to cybersecurity scenarios that
require state transitions is an advantage of the proposed solu-
Table 5 – Comparison of the proposed solution and Deep-
Exploit.

Reinforcement
learning model

Target for
automation

State
transition

DeepExploit A3C Exploitation None
(initial
exploitation)

Proposed
solution

A2C Post-exploitation Represented

12 c o m p u t e r s & s e c u r i t y 1 0 0 (2 0 2 1) 1 0 2 1 0 8

t

D
p
p
i
f

r
u
f
w
s

t
m
c
l
r
t
i
p
m
t

m
t
A
e
t
e
i
S
i

6

O
t
t
t
p
i
t
b
p
p

6

A
w
m
u
E
e
m
r

m
s

s
t
t
e

a
d
c
fi

s
c
f
p
i
t

T
s
o

7

T
e
t
m
t
m
Q
r
r
l
b
i
d
d
i

D

T
n
p

C

V
c
M

P

R

A

ion. Another difference is the training sample of the agents.
eepExploit trains agents from real-world samples, while the
roposed solution trains the agents from the synthetic sam-
les (The reason for using the synthetic sample is described

n Section 6.4.). In this regard, DeepExploit is a more realistic
ramework than the proposed solution.

Next, we must consider comparison with studies in which

einforcement learning was applied to the cyber-security sim-
lation. Our work demonstrated the applicability of rein-
orcement learning in the actual environment. The previous
orks applied reinforcement learning to the cyber-security-

imulation (Elderman et al., 2017; He et al., 2016). However,
hese works have demonstrated the applicability of reinforce-

ent learning only in the simulation environment. Specifi-
ally, the previous works do not support automation such as
ateral movement and privilege escalation in an actual envi-
onment. By contrast, our work has demonstrated it in the ac-
ual environment. We implemented the reinforcement learn-
ng agents to be executable in the actual environment. This
aper demonstrated the practical automation of lateral move-
ent in the actual environment. Altogether, our work con-

ributed to improving the practicality of the previous works.
Finally, let us discuss the comparison with the agentless

odel, DeathStar (Deathstar) . DeathStar is a Python script
hat uses Empire’s RESTful API to automate gaining Domain

dmin rights in Active Directory environments using a vari-
ty of techniques. DeathStar and our method are similar in

hat they rely on PowerShell Empire and automate the post-
xploitation. However, DeathStar is just a script. It does noth-
ng more than its programmed behavior. Altogether, Death-
tar has the pros and cons of the agentless model mentioned

n Section 6.1 .

.3. Research ethics

ur method is an effective and proactive approach to cyber-
hreats. Our method simulates the attack methods that an at-
acker actually uses in a real environment. This makes easy
he red team test which requires high cost and highly skilled

ersonnel, that is, this can improve the defense. However, it
s necessary to take preventive measures against the abuse of
he research on attack techniques. The PowerShell Empire has
een deprecated support due to abuse cases. Besides, the im-
lementation code of this research using the PowerShell Em-
ire is not published to prevent abuse.

.4. Limitations

s we mentioned in Section 6.3 , the PowerShell Empire Frame-
ork is no longer maintained. Since the PowerShell Empire
odules are defined as the agent’s action, it is impossible to

pdate and improve the agent’s action unless the PowerShell
mpire is not updated. Thus, the drawback of using the Pow-
rShell Empire is that the implementation of the proposed

ethod depends on the PowerShell Empire; however, it can

eplace with other frameworks.
Besides,the following points are left as future problems.
There are little diversity in the training environment. Our

ethod diversified the training environment by setting the
uccess probability of the agent’s action: 5 success probability
etting patterns were evaluated. However, it will be difficult
o represent the diversity of the actual environment only by
he success probability. The methods to diversify the learning
nvironment are the subject of a future study.

Besides, in this paper, we attempted only one method of
gent state definition. Depending on the method of the state
efinition, the agent’s behavior and the learning progress may
hange. Thus, exploring and evaluating other methods to de-
ne the state of the agent is also the subject of a future study.

Finally, the samples used to train the agents are synthetic
amples and the real-world testing is conducted in the limited

ondition. Ideally, the agent should learn the exploitations
rom real-world samples rather than synthetic samples. This
roblem limits the effectiveness of agent training and learn-

ng. Specifically, the agents will probably not be able to adapt
o a wide variety of characteristic environments at this time.
herefore, in this regard, our contribution is that it demon-
trated the potential of a planned (or modeled) cyber-attack
ptimized by deep reinforcement learning.

. Conclusion and future work

his paper proposes a method to automating the post-
xploitation with deep reinforcement learning and evaluated

he effectiveness in the actual environment. The reinforce-
ent learning agents are implemented to be executable in

he actual environment. In our experiments, we compared the
ethods of A2C, which are our methods, with the methods of
-Learning, SARSA, and 2 basics. The results show the supe-

iority of our method. Specifically, our method could obtain

eward most efficiently and obtain the administrative privi-
eges to the domain controller. This is the first study, to the
est of our knowledge, that automates post-exploitation by re-

nforcement learning in the actual environments. Interesting
irections for future work include 1) studying the methods to
iversify the learning environment, 2) designing and evaluat-

ng other definitions of the agents state.

eclaration of Competing Interest

he authors declare that they have no known competing fi-
ancial interests or personal relationships that could have ap-
eared to influence the work reported in this paper.

RediT authorship contribution statement

Ryusei Maeda: Conceptualization, Methodology, Software,
alidation, Formal analysis, Investigation, Resources, Data
uration, Writing - original draft, Visualization. Mamoru

imura: Conceptualization, Data curation, Supervision,
roject administration, Funding acquisition.

E F E R E N C E S

pruzzese G, Colajanni M, Ferretti L, Guido A, Marchetti M. On

the effectiveness of machine and deep learning for cyber

c o m p u t e r s & s e c u r i t y 1 0 0 (2 0 2 1) 1 0 2 1 0 8 13

security. In: 10th International Conference on Cyber Conflict,
CyCon 2018, Tallinn, Estonia, May 29, - June 1, 2018; 2018.
p. 371–90. doi: 10.23919/CYCON.2018.8405026 .

B.Deply, 2014. Mimikatz. https://github.com/gentilkiwi/mimikatz .
Bland JA, Petty MD, Whitaker TS, Maxwell KP, Cantrell WA.

Machine learning cyberattack and defense strategies.
Computers & Security 2020;92:101738.
doi: 10.1016/j.cose.2020.101738 .

Boileau, A.,. Trust transience: Post intrusion ssh hijacking. In

Blackhat Briefings August 2005.
Çavusoglu Ü. A new hybrid approach for intrusion detection

using machine learning methods. Appl. Intell.
2019;49(7):2735–61. doi: 10.1007/s10489-018-01408-x .

Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP. SMOTE:
synthetic minority over-sampling technique. J. Artif. Intell.
Res. 2002;16:321–57. doi: 10.1613/jair.953 .

Cui Z, Xue F, Cai X, Cao Y, Wang G, Chen J. Detection of malicious
code variants based on deep learning. IEEE Trans. Ind. Inf.
2018;14(7):3187–96. doi: 10.1109/TII.2018.2822680 .

Deathstar, https://github.com/byt3bl33d3r/DeathStar .
Duckwall, S., Campbell, C.,. Hello, my name is microsoft and I

have acredential problem in blackhat USA 2013 white papers
2013. https://media.blackhat.com/us-13/
US- 13- Duckwall- Pass- the- Hash- WP.pdf.

Dunagan J, Zheng AX, Simon DR. Heat-ray: combating identity
snowball attacks using machinelearning, combinatorial
optimization and attack graphs. In: Proceedings of the 22nd

ACM Symposium on Operating Systems Principles 2009, SOSP
2009, Big Sky, Montana, USA, October 11–14, 2009; 2009.
p. 305–20. doi: 10.1145/1629575.1629605 .

Elderman R, Pater LJJ, Thie AS, Drugan MM, Wiering M.
Adversarial reinforcement learning in a cyber security
simulation. In: van den Herik HJ, Rocha AP, Filipe J, editors. In:
Proceedings of the 9th International Conference on Agents
and Artificial Intelligence, ICAART 2017, Volume 2, Porto,
Portugal, February 24–26, 2017.. SciTePress; 2017. p. 559–66.
doi: 10.5220/0006197105590566 .

Ghanem MC, Chen TM. Reinforcement learning for intelligent
penetration testing. In: 2018 Second World Conference on

Smart Trends in Systems, Security and Sustainability
(WorldS4); 2018. p. 185–92. doi: 10.1109/WorldS4.2018.8611595 .

He X, Dai H, Ning P. Faster learning and adaptation in security
games by exploiting information asymmetry. IEEE Trans.
Signal Processing 2016;64(13):3429–43.
doi: 10.1109/TSP.2016.2548987 .

Isao, T.,. Metasploit meets machine learning.
https://www.mbsd.jp/blog/20180228.html .

Jia J , Gong NZ . Attriguard: a practical defense against attribute
inference attacks via adversarial machine learning. In: 27th

USENIX Security Symposium, USENIX Security 2018,
Baltimore, MD, USA, August 15–17, 2018; 2018. p. 513–29 .

Kim T, Kang B, Rho M, Sezer S, Im EG. A multimodal deep learning
method for android malware detection using various features.
IEEE Trans. Inf. Forensics Secur. 2019;14(3):773–88.
doi: 10.1109/TIFS.2018.2866319 .

Lah AAA, Dziyauddin RA, Azmi MH. Proposed framework for
network lateral movement detection based on user risk
scoring in SIEM. In: 2018 2nd International Conference on

Telematics and Future Generation Networks (TAFGEN); 2018.
p. 149–54. doi: 10.1109/TAFGEN.2018.8580484 .
Leen, T. K., Dietterich, T. G., Tresp, V. (Eds.), 2001. Advances in

Neural Information Processing Systems 13, Papers from

Neural Information Processing Systems (NIPS) 2000, Denver,
CO, USA, MIT Press.

Milosevic N, Dehghantanha A, Choo KR. Machine learning aided

android malware classification. Computers & Electrical
Engineering 2017;61:266–74.
doi: 10.1016/j.compeleceng.2017.02.013 .

Mnih V , Badia AP , Mirza M , Graves A , Lillicrap TP , Harley T ,
Silver D , Kavukcuoglu K . Asynchronous methods for deep

reinforcement learning. In: Proceedings of the 33nd

International Conference on Machine Learning, ICML 2016,
New York City, NY, USA, June 19–24, 2016; 2016. p. 1928–37 .

Powershell empire, | building an empire with powershell.
https://www.powershellempire.com/ .

Rapid7,. Metasploit | penetration testing software, pen testing
security | metasploit. https://www.metasploit.com/ .

Sharma A, Kalbarczyk Z, Barlow J, Iyer RK. Analysis of security
data from a large computing organization. In: Proceedings of
the 2011 IEEE/IFIP International Conference on Dependable
Systems and Networks, DSN 2011, Hong Kong, China, June
27–30 2011; 2011. p. 506–17. doi: 10.1109/DSN.2011.5958263 .

Shadowmove . In: 29th USENIX Security Symposium (USENIX

Security 20). A stealthy lateral movement strategy. Boston,
MA: USENIX Association; 2020 .

Simard PY, LeCun Y, Denker JS, Victorri B. Transformation

invariance in pattern recognition: tangent distance and

propagation. Int. J. Imaging Systems and Technology
2000;11(3):181–97.
doi: 10.1002/1098-1098(2000)11:3 < 181::AID-IMA1003 > 3.0.CO;2-E .

Tian Z, Shi W, Wang Y, Zhu C, Du X, Su S, Sun Y, Guizani N.
Real-time lateral movement detection based on evidence
reasoning network for edge computing environment. IEEE
Trans. Industrial Informatics 2019;15(7):4285–94.
doi: 10.1109/TII.2019.2907754 .

Wu, Y., Mansimov, E., Liao, S., Radford, A., Schulman, J.,. Openai
baselines:acktr & a2c.
https://openai.com/blog/baselines- acktr- a2c/ .

Wueest, C.,. The increased use of powershell in attacks.
https://www.symantec.com/content/dam/symantec/docs/
security- center/white- papers/
increased- use- of- powershell- in- attacks- 16- en.pdf.

Ryusei Maeda received his B.E. in Engineering from National De-
fense Academy of Japan, in 2020. Currently, he is a member of the
Japan Maritime Self-Defense Force.

Mamoru Mimura received his B.E. and M.E. in Engineering from
National Defense Academy of Japan, in 2001 and 2008 respectively.
He received his Ph.D in Informatics from the Institute of Informa-
tion Security in 2011 and M.B.A. from Hosei University in 2014.
During 2001–2017, he was a member of the Japan Maritime Self-
Defense Force. During 2011–2013, he was with the National Infor-
mation Security Center. Since 2014, he has been a researcher in
the Institute of Information Security. Since 2015, he has been with
the National center of Incident readiness and Strategy for Cyber-
security. Currently, he is an Associate Professor in the Department
of C.S., National Defense Academy of Japan.

https://doi.org/10.23919/CYCON.2018.8405026
https://github.com/gentilkiwi/mimikatz
https://doi.org/10.1016/j.cose.2020.101738
https://doi.org/10.1007/s10489-018-01408-x
https://doi.org/10.1613/jair.953
https://doi.org/10.1109/TII.2018.2822680
https://github.com/byt3bl33d3r/DeathStar
https://media.blackhat.com/us-13/US-13-Duckwall-Pass-the-Hash-WP.pdf
https://doi.org/10.1145/1629575.1629605
https://doi.org/10.5220/0006197105590566
https://doi.org/10.1109/WorldS4.2018.8611595
https://doi.org/10.1109/TSP.2016.2548987
https://www.mbsd.jp/blog/20180228.html
http://refhub.elsevier.com/S0167-4048(20)30381-3/sbref0015
http://refhub.elsevier.com/S0167-4048(20)30381-3/sbref0015
http://refhub.elsevier.com/S0167-4048(20)30381-3/sbref0015
https://doi.org/10.1109/TIFS.2018.2866319
https://doi.org/10.1109/TAFGEN.2018.8580484
https://doi.org/10.1016/j.compeleceng.2017.02.013
http://refhub.elsevier.com/S0167-4048(20)30381-3/sbref0020
http://refhub.elsevier.com/S0167-4048(20)30381-3/sbref0020
http://refhub.elsevier.com/S0167-4048(20)30381-3/sbref0020
http://refhub.elsevier.com/S0167-4048(20)30381-3/sbref0020
http://refhub.elsevier.com/S0167-4048(20)30381-3/sbref0020
http://refhub.elsevier.com/S0167-4048(20)30381-3/sbref0020
http://refhub.elsevier.com/S0167-4048(20)30381-3/sbref0020
http://refhub.elsevier.com/S0167-4048(20)30381-3/sbref0020
http://refhub.elsevier.com/S0167-4048(20)30381-3/sbref0020
https://www.powershellempire.com/
https://www.metasploit.com/
https://doi.org/10.1109/DSN.2011.5958263
http://refhub.elsevier.com/S0167-4048(20)30381-3/sbref0024
http://refhub.elsevier.com/S0167-4048(20)30381-3/sbref0024
https://doi.org/10.1002/1098-1098(2000)11:3<181::AID-IMA1003>3.0.CO;2-E
https://doi.org/10.1109/TII.2019.2907754
https://openai.com/blog/baselines-acktr-a2c/
https://www.symantec.com/content/dam/symantec/docs/security-center/white-papers/increased-use-of-powershell-in-attacks-16-en.pdf

	Automating post-exploitation with deep reinforcement learning
	1 Introduction
	2 Related work
	2.1 Lateral movement
	2.2 Applying reinforcement learning to penetration tests
	2.3 Cyber security simulation

	3 Reinforcement learning
	3.1 Types of reinforcement learning
	3.2 A2C

	4 Proposed method
	4.1 Overview
	4.2 Definition of agent state
	4.3 Definition of agent action
	4.4 Reward setting
	4.5 Implementation

	5 Evaluation
	5.1 The learning phase
	5.1.1 Setting up training environment and training the agent
	5.1.2 Comparison of reinforcement learning models

	5.2 The testing phase

	6 Discussion
	6.1 Effectiveness of deep reinforcement learning
	6.2 Comparison
	6.3 Research ethics
	6.4 Limitations

	7 Conclusion and future work
	Declaration of Competing Interest
	CRediT authorship contribution statement

	Reference

